Disturbance and nutrients synchronise kelp forests across scales through interacting Moran effects

12Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Spatial synchrony is a ubiquitous and important feature of population dynamics, but many aspects of this phenomenon are not well understood. In particular, it is largely unknown how multiple environmental drivers interact to determine synchrony via Moran effects, and how these impacts vary across spatial and temporal scales. Using new wavelet statistical techniques, we characterised synchrony in populations of giant kelp Macrocystis pyrifera, a widely distributed marine foundation species, and related synchrony to variation in oceanographic conditions across 33 years (1987–2019) and >900 km of coastline in California, USA. We discovered that disturbance (storm-driven waves) and resources (seawater nutrients)—underpinned by climatic variability—act individually and interactively to produce synchrony in giant kelp across geography and timescales. Our findings demonstrate that understanding and predicting synchrony, and thus the regional stability of populations, relies on resolving the synergistic and antagonistic Moran effects of multiple environmental drivers acting on different timescales.

Cite

CITATION STYLE

APA

Castorani, M. C. N., Bell, T. W., Walter, J. A., Reuman, D. C., Cavanaugh, K. C., & Sheppard, L. W. (2022, August 1). Disturbance and nutrients synchronise kelp forests across scales through interacting Moran effects. Ecology Letters. John Wiley and Sons Inc. https://doi.org/10.1111/ele.14066

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free