Thermo-mechanical characterisations of flax fibre and thermoplastic resin composites during manufacturing

9Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

The flax fibre reinforced composites with advanced structure, which can be regarded as recyclable parts, are potential and promising materials in the automobile industry. During their manufacturing, the reinforcements or prepregs should be performed to the desired shape beforehand. Mechanical behaviours accordingly play an important role during this process. However, this preforming process is usually under high temperatures, thus, the mechanical behaviours could be modified under this state. Especially for reinforcements produced by flax yarns, has barely been studied. To fill this gap, in this paper the thermos-mechanical characterization of Flax/Polyamide12 (PA12) commingled yarn and prepreg woven fabric is analysed using tensile and in-plane shearing tests under different temperatures and tensile speeds. The results conclusively show that strength can be improved by increasing the temperature below the PA12 melting value on woven fabrics, which is inverse tendency for single yarn. Moreover, increasing tensile speed could increase the strength of the single yarn and fabric. This reveals that the PA12 fluidity has great influence on tensile behaviour. The characterisation results would be employed as prescriptive recommendations in the process of manufacturing flax fibre-reinforced composite parts.

Cite

CITATION STYLE

APA

Xiao, S., Wang, P., Soulat, D., & Gao, H. (2018). Thermo-mechanical characterisations of flax fibre and thermoplastic resin composites during manufacturing. Polymers, 10(10). https://doi.org/10.3390/polym10101139

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free