Use of wastewater alum-coagulation sludge as a phosphorus fertiliser – a mini review

2Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The use of aluminium (Al) salts, particularly alum, in coagulation is a widespread and conventional treatment method for eliminating pollutants, including phosphorus (P) which can cause eutrophication, from wastewater. However, a significant challenge of this process is the substantial amount of sludge generated, necessitating proper disposal. Historically, land disposal has been a common practice, but it poses potential issues for plant life on these lands. Despite the associated drawbacks, sludge contains elevated concentrations of vital plant nutrients like P and nitrogen, presenting an opportunity for beneficial use in agriculture. Given the imminent scarcity of P fertilizers due to the eventual depletion of high-grade P ores, this review explores the potential advantages and challenges of utilizing Al sludge as a P source for plants and proposes measures for its beneficial application. One primary concern with land application of Al sludge is its high levels of soluble Al, known to be toxic to plants, particularly in acidic soils. Another issue arises from the elevated Al concentration is P fixation and subsequently reducing P uptake by plants. To address these issues, soil treatment options such as lime, gypsum, and organic matter can be employed. Additionally, modifying the coagulation process by substituting part of the Al salts with cationic organic polymers proves effective in reducing the Al content of the sludge. The gradual release of P from sludge into the soil over time proves beneficial for plants with extended growth periods.

Cite

CITATION STYLE

APA

Loganathan, P., Kandasamy, J., Ratnaweera, H., & Vigneswaran, S. (2024, March 1). Use of wastewater alum-coagulation sludge as a phosphorus fertiliser – a mini review. Environmental Science and Pollution Research. Springer. https://doi.org/10.1007/s11356-024-32497-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free