Lipophagy prevents activity‐dependent neurodegeneration due to dihydroceramide accumulation in vivo

  • Jung W
  • Liu C
  • Yu Y
  • et al.
32Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Dihydroceramide desaturases are evolutionarily conserved enzymes that convert dihydroceramide (dhCer) to ceramide (Cer). While elevated Cer levels cause neurodegenerative diseases, the neuronal activity of its direct precursor, dhCer, remains unclear. We show that knockout of the fly dhCer desaturase gene, infertile crescent ( ifc ), results in larval lethality with increased dhCer and decreased Cer levels. Light stimulation leads to ROS increase and apoptotic cell death in ifc ‐ KO photoreceptors, resulting in activity‐dependent neurodegeneration. Lipid‐containing Atg8/ LC 3‐positive puncta accumulate in ifc ‐ KO photoreceptors, suggesting lipophagy activation. Further enhancing lipophagy reduces lipid droplet accumulation and rescues ifc ‐ KO defects, indicating that lipophagy plays a protective role. Reducing dhCer synthesis prevents photoreceptor degeneration and rescues ifc ‐ KO lethality, while supplementing downstream sphingolipids does not. These results pinpoint that dhCer accumulation is responsible for ifc ‐ KO defects. Human dhCer desaturase rescues ifc ‐ KO larval lethality, and rapamycin reverses defects caused by dhCer accumulation in human neuroblastoma cells, suggesting evolutionarily conserved functions. This study demonstrates a novel requirement for dhCer desaturase in neuronal maintenance in vivo and shows that lipophagy activation prevents activity‐dependent degeneration caused by dhCer accumulation. image This study dissects the role of the fly dhCer desaturase ifc in neurons by genetic and pharmaceutical methods. dhCer desaturase is required for neuronal maintenance in vivo and lipophagy activation prevents activity‐dependent degeneration due to dhCer accumulation. Light stimulation leads to ROS increase and apoptotic cell death in ifc‐ KO photoreceptors, resulting in activity‐dependent neurodegeneration. Enhancing lipophagy reduces lipid droplet accumulation and rescues ifc‐ KO defects, indicating that lipophagy plays a protective role. Human dhCer desaturase rescues ifc‐ KO larval lethality in Drosophila and rapamycin reverses defects caused by dhCer accumulation in human neuroblastoma cells, suggesting evolutionarily conserved functions.

Cite

CITATION STYLE

APA

Jung, W., Liu, C., Yu, Y., Chang, Y., Lien, W., Chao, H., … Chan, C. (2017). Lipophagy prevents activity‐dependent neurodegeneration due to dihydroceramide accumulation in vivo. EMBO Reports, 18(7), 1150–1165. https://doi.org/10.15252/embr.201643480

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free