Leaf chlorophyll fluorescence parameters and huanglongbing

32Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

Abstract

Chlorophyll fluorescence and photochemical and nonphotochemical quenching parameters were measured in 20 genotypes of Citrus spp. or relatives grown in the greenhouse and commercial 'Valencia' sweet orange (Citrus sinensis) trees at two Florida locations. The purpose was to determine the utility of measurements for early huanglongbing [HLB (Candidatus Liberibacter asiaticus)] detection in asymptomatic trees and to examine the leaf response to HLB infection. Polymerase chain reaction (PCR)-negative healthy and PCR-positive symptomatic, asymptomatic, and distant asymptomatic leaves were used for fluorescence analysis using a portable chlorophyll fluorometer. Greenhouse-grown genotypes were separated into mild, moderate, and severe symptom groups based on leaf mottling, color, and size. In general, mild symptom genotypes were characterized by increased photosystem II (PSII) excitation pressure and unregulated heat dissipation and decreased regulated heat dissipation, whereas moderate and severe symptom genotypes increased loss of photosynthetic efficiency and increased unregulated and regulated heat dissipation. Distant asymptomatic leaves could be distinguished from healthy ones in moderate and severe symptom genotypes by increased total and regulated heat dissipation measurements. In the field, overall photosynthetic efficiency and total regulated heat dissipation measurements could distinguish between healthy and asymptomatic 'Valencia' sweet orange leaves at the location with slow or more recent infection, but not at the location where infection appeared to progress faster or was of longer duration. Starch content followed a similar pattern. The results indicate that no single measurement uniquely described the relationship between HLB and the host in asymptomatic and healthy leaves, but accuracy of field-based detection could be strengthened by a combination of total nonphotochemical quenching, overall photosynthetic efficiency, starch content, and PCR analyses. Chlorophyll fluorescence and quenching measurements suggest a PSII-based explanation for, and temperature dependency of, leaf symptom development.

Cite

CITATION STYLE

APA

Sagaram, M., & Burns, J. K. (2009). Leaf chlorophyll fluorescence parameters and huanglongbing. Journal of the American Society for Horticultural Science, 134(2), 194–201. https://doi.org/10.21273/jashs.134.2.194

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free