Upregulation of miR-29b-3p protects cardiomyocytes from hypoxia-induced apoptosis by targeting TRAF5

31Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: MicroRNAs (miRNAs) are pivotal regulators in regulating hypoxia-induced cardiomyocyte injury. This study was designed to evaluate the effects of miR-29b-3p on hypoxic cardiomyocytes. Methods: Human AC16 cells were cultured under normoxic or hypoxic conditions. Hypoxic injury was confirmed based on alterations in cell viability using CCK-8 assay and apoptosis using flow cytometry and Hoechst staining. Bioinformatics analyses and the dual-luciferase reporter assay were performed to predict and validate the target gene of miR-29b-3p. Results: We found that hypoxia suppressed cell viability and promoted apoptosis. TNF receptor-associated factor 5 (TRAF5) was a potential target gene of miR-29b-3p. Our in vitro experiments revealed that miR-29b-3p overexpression or TRAF6 knockdown significantly protected cardiomyocytes against hypoxia-induced injury. Moreover, knockdown of TRAF5 knockdown potentiated the protective effects of miR-29b-3p against hypoxia-induced cell injury. Conclusion: These findings suggest that upregulation of miR-29b-3p could protect cardiomyocytes against hypoxia-induced injury through downregulation of TRAF5. Targeting TRAF5 with miR-29b-3p might be a potential therapeutic method for AMI.

Author supplied keywords

Cite

CITATION STYLE

APA

Cai, Y., & Li, Y. (2019). Upregulation of miR-29b-3p protects cardiomyocytes from hypoxia-induced apoptosis by targeting TRAF5. Cellular and Molecular Biology Letters, 24(1). https://doi.org/10.1186/s11658-019-0151-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free