The inflammasome is a macromolecular protein complex that mediates proteolytic cleavage of pro-IL-1β and -IL-18 and induces cell death in the form of pyroptosis. Certain nucleotide-binding oligomerization domain-like receptors (NLRs), absent in melanoma 2 (AIM2)-like receptors (ALRs), or tripartite motif (TRIM) family receptors trigger the assembly of an inflammasome in response to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). Recent studies have revealed a multitude of host components and signals that are essential for controlling canonical and noncanonical inflammasome activation and pyroptosis. These include pore-forming gasdermin proteins, the never in mitosis A-related kinase 7 (NEK7), IFN-inducible proteins (IFIs), reactive oxygen species (ROS), autophagy, potassium efflux, mitochondrial perturbations, and microbial metabolites. Here, we provide a comprehensive overview of the molecular and signaling mechanisms that provide stringent regulation over the activation and effector functions of the inflammasome.
CITATION STYLE
Mathur, A., Hayward, J. A., & Man, S. M. (2018). Molecular mechanisms of inflammasome signaling. Journal of Leukocyte Biology, 103(2), 233–257. https://doi.org/10.1189/jlb.3mr0617-250r
Mendeley helps you to discover research relevant for your work.