Lifelong physical inactivity is associated with morbidity in adulthood, possibly influenced by changes in gene and protein expressions occurring earlier in life. mRNA (Affymetrix gene array) and proteomic (2D-DIGE MALDI-TOF/MS) analyses were determined in cardiac tissue of young (3 months) and old (16 months) Sprague-Dawley rats housed with no access to physical activity (SED) versus an exercise wheel (EX). Unfavorable phenotypes for body weight, dyslipidemia, and tumorogenesis appeared more often in adult SED versus EX. No differentially expressed genes (DEGs) occurred between groups at 3 or 16 months. Within groups, SED and EX shared 215 age-associated DEGs. In SED, ten unique DEGs occurred with age; three had cell adhesion functions (fn1, lgals3, ncam2). In EX, five unique DEGs occurred with age; two involved hypothalamic, pituitary, and gonadal hormone axis (nrob2, xpnpep2). Protein expression involved in binding, sugar metabolic processes, and vascular regulation declined with age in SED (KNT1, ALBU, GPX1, PYGB, LDHB, G3P, PYGM, PGM1, ENOB). Protein expression increased with age in EX for ATP metabolic processes (MYH6, MYH7, ATP5J, ATPA) and vascular function (KNT1, ALBU, GPX1). Differences in select gene and protein expressions within sedentary and active animals occurred with age and contributed to distinct health-related phenotypes in adulthood. © 2014 Helaine M. Alessio et al.
CITATION STYLE
Alessio, H. M., Ansinelli, H., Threadgill, C., & Hagerman, A. E. (2014). Comparison of gene and protein expressions in rats residing in standard cages with those having access to an exercise wheel. BioMed Research International, 2014. https://doi.org/10.1155/2014/950516
Mendeley helps you to discover research relevant for your work.