Eutrophication caused by excessive total nitrogen (TN) and total phosphorus (TP) emissions is of wide concern for society at large. Studies have revealed certain relationships among land use, TN, and TP. However, the relationships among land use compound topographic position, TP, and TN have seldom been studied. Therefore, the objectives of this paper are to construct optimal zoning of land use and reduce the nutrient load of lakes. Spearman correlation and redundancy analyses were used to reveal the relationship between land use comprehensive topographic position and TN and TP in the lakes of Guizhou Plateau. The results show that the nutritional state of the research area is medium. The trophic level index (TLI) value and TN concentration were high during flood periods, while TP concentration was high in dry periods. The TN concentration in the tributaries was higher than that in the reservoir area. Construction land and valley were the sources of the pollution, whereas forest land and gentle slope were the sink. According to the ”source–sink” effect, once the optimal zoning of land use is completed, the governance of urban land pollution governed areas should be strengthened next. This paper can provide decision support for water environment management and sustainable development decision-making.
CITATION STYLE
Zhou, X., Zhang, W., Pei, Y., Jiang, X., & Yang, S. (2022). Zoning Strategy for Basin Land Use Optimization for Reducing Nitrogen and Phosphorus Pollution in Guizhou Karst Watershed. Water (Switzerland), 14(16). https://doi.org/10.3390/w14162589
Mendeley helps you to discover research relevant for your work.