Ligand-targeting drug conjugates are a class of clinically validated biopharmaceu-tical drugs constructed by conjugating cytotoxic drugs with specific disease antigen targeting ligands through appropriate linkers. The integrated linker-drug motif embedded within such a system can prevent the premature release during systemic circulation, thereby allowing the targeting ligand to engage with the disease antigen and selective accumulation. We have designed and synthesized new thioester-linked maytansinoid conjugates. By performing in vitro cytotoxicity, targeting ligand binding assay, and in vivo pharmacokinetic studies, we investigated the utility of this new linker-drug moiety in the small molecule drug conjugate (SMDC) system. In particular, we conjugated the thioester-linked maytansinoids to the phosphatidylserine-targeting small molecule zinc dipicolylamine and showed that Zn8_DM1 induced tumor regression in the HCC1806 triple-negative breast cancer xenograft model. Moreover, in a spontaneous sorafenib-resistant liver cancer model, Zn8_DM1 exhibited potent antitumor growth efficacy. From quantitative mRNA analysis of Zn8_DM1 treated-tumor tissues, we observed the elevation of gene expressions associated with a “hot inflamed tumor” state. With the identification and validation of a plethora of cancer-associated antigens in the “omics” era, this work provided the insight that antibody-or small molecule-based targeting ligands can be conjugated similarly to generate new ligand-targeting drug conjugates.
CITATION STYLE
Lo, C. F., Chiu, T. Y., Liu, Y. T., Huang, L. R., Yeh, T. K., Huang, K. H., … Tsou, L. K. (2022). Synthesis and Evaluation of Small Molecule Drug Conjugates Harnessing Thioester-Linked Maytansinoids. Pharmaceutics, 14(7). https://doi.org/10.3390/pharmaceutics14071316
Mendeley helps you to discover research relevant for your work.