Poly(ADP-ribose) polymerase-1 (PARP-1), activated by DNA strand breaks, participates in the DNA repair process physiologically. Excessive activation of PARP-1 mediates necrotic cell death under the status of oxidative stress and DNA damage. However, it remains elusive whether and how PARP-1 activation is involved in autophagy and what is the function of PARP-1-mediated autophagy under oxidative stress and DNA damage. We recently demonstrated that hydrogen peroxide (H2O2) induces autophagy through a novel autophagy signaling mechanism linking PARP-1 activation to the LKB1-AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) pathway. Furthermore, PARP-1-mediated autophagy plays a cytoprotective role in H2O2-induced necrotic cell death as suppression of autophagy greatly sensitizes H2O2-induced cell death. Our study thus identifies a novel function of PARP-1 in mediating autophagy and it appears that PARP-1 possesses a dual role in modulating necrosis and autophagy under oxidative stress and DNA damage: on the one hand, overactivation of PARP-1 leads to ATP depletion and necrotic cell death; on the other hand, PARP-1 activation promotes autophagy via the LKB1-AMPK-mTOR pathway to enhance cell survival. The cellular decision of life or death depends on the balance between autophagy and necrosis mediated by these two distinct pathways. ©2009 Landes Bioscience.
CITATION STYLE
Huang, Q., & Shen, H. M. (2009). To die or to live: The dual role of poly(ADP-ribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage. Autophagy, 5(2), 273–276. https://doi.org/10.4161/auto.5.2.7640
Mendeley helps you to discover research relevant for your work.