This paper introduces a novel data-driven approach to address challenges faced by city policymakers concerning the distribution of public funds. Providing budgeting processes for improving quality of life based on objective (data-driven) evidence has been so far a missing element in policy-making. This paper focuses on a case study of 1,204 citizens in the city of Aarau, Switzerland, and analyzes survey data containing insightful indicators that can impact the legitimacy of decision-making. Our approach is twofold. On the one hand, we aim to optimize the legitimacy of policymakers' decisions by identifying the level of investment in neighborhoods and projects that offer the greatest return in legitimacy. To do so, we introduce a new context-independent legitimacy metric for policymakers. This metric allows us to distinguish decisive vs. indecisive collective preferences for neighborhoods or projects on which to invest, enabling policymakers to prioritize impactful bottom-up consultations and participatory initiatives (e.g., participatory budgeting). The metric also allows policymakers to identify the optimal number of investments in various project sectors and neighborhoods (in terms of legitimacy gain). On the other hand, we aim to offer guidance to policymakers concerning which satisfaction and participation factors influence citizens' quality of life through an accurate classification model and an evaluation of relocations. By doing so, policymakers may be able to further refine their strategy, making targeted investments with significant benefits to citizens' quality of life. These findings are expected to provide transformative insights for practicing direct democracy in Switzerland and a blueprint for policy-making to adopt worldwide.
CITATION STYLE
Wellings, T. S., Majumdar, S., Haenggli Fricker, R., & Pournaras, E. (2023). Improving City Life via Legitimate and Participatory Policy-making: A Data-driven Approach in Switzerland. In ACM International Conference Proceeding Series (pp. 23–35). Association for Computing Machinery. https://doi.org/10.1145/3598469.3598472
Mendeley helps you to discover research relevant for your work.