Integrating the properties of computer algebra systems and dynamic geometry environments, Geogebra became an effective and powerful tool for teaching and learning mathematics. One of the reasons that teachers use Geogebra in mathematics classrooms is to make students learn mathematics meaningfully and conceptually. From this perspective, the purpose of this study was to investigate whether instruction with Geogebra has effect on students’ achievements regarding their conceptual and procedural knowledge on the applications of derivative subject. This study adopted the quantitative approach with pre-test post-test control group true experimental design. The participants were composed of two calculus classrooms involving 31 and 24 students, respectively. The experimental group with 31 students received instruction with Geogebra while the control group received traditional instruction in learning the applications of derivative. Independent samples t-test was used in the analysis of the data gathered from students’ responses to Applications of Derivative Test which was subjected to them before and after teaching processes. The findings indicated that instruction with Geogebra had positive effect on students’ scores regarding conceptual knowledge and their overall scores. On the other hand, there was no significant difference between experimental and control group students’ scores regarding procedural knowledge. It could be concluded that students in both groups were focused on procedural knowledge to be successful in learning calculus subjects including applications of derivative in both groups. On the other hand, instruction with Geogebra supported students’ learning these subjects meaningfully and conceptually.
CITATION STYLE
Ocal, M. F. (2017). The Effect of Geogebra on Students’ Conceptual and Procedural Knowledge: The Case of Applications of Derivative. Higher Education Studies, 7(2), 67. https://doi.org/10.5539/hes.v7n2p67
Mendeley helps you to discover research relevant for your work.