Early-onset generalized dystonia (DYT1) is a debilitating neurological disorder characterized by involuntary movements and sustained muscle spasms. DYT1 dystonia has been associated with two mutations in torsinA that result in the deletion of a single glutamate residue (torsinA ΔE) and six amino-acid residues (torsinA Δ323-8). We recently revealed that torsinA, a peripheral membrane protein, which resides predominantly in the lumen of the endoplasmic reticulum (ER) and nuclear envelope (NE), is a long-lived protein whose turnover is mediated by basal autophagy. Dystonia-associated torsinA ΔE and torsinA Δ323-8 mutant proteins show enhanced retention in the NE and accelerated degradation by both the proteasome and autophagy. Our results raise the possibility that the monomeric form of torsinA mutant proteins is cleared by proteasome-mediated ER-associated degradation (ERAD), whereas the oligomeric and aggregated forms of torsinA mutant proteins are cleared by ER stress-induced autophagy. Our findings provide new insights into the pathogenic mechanism of torsinA ΔE and torsinA Δ323-8 mutations in dystonia and emphasize the need for a mechanistic understanding of the role of autophagy in protein quality control in the ER and NE compartments. ©2009 Landes Bioscience.
CITATION STYLE
Giles, L. M., Li, L., & Chin, L. S. (2009). TorsinA protein degradation and autophagy in DYT1 dystonia. Autophagy, 5(1), 82–84. https://doi.org/10.4161/auto.5.1.7173
Mendeley helps you to discover research relevant for your work.