The detection of light, one of the most important technologies, has widespread applications in industry and our daily life, e.g., environmental monitoring, communications, surveillance, image sensors, and advanced diagnosis. Along with the remarkable progress in the field of organics, those based on quantum dots, and recently emerged perovskite optoelectronics, photodetectors based on these solution-processable semiconductors have shown unprecedented success. In this review, we present the basic operation mechanism and the characterization of the performance metrics based on these novel materials systems. Then, we focus on the current research status and recent advances with the following five aspects: (i) spectral tunability, (ii) cavity enhanced photodetectors, (iii) photomultiplication type photodetectors, (iv) sensitized phototransistors, and (v) ionizing radiation detection. At the end, we discuss the key challenges facing these novel photodetectors toward manufacture and viable applications. We also point out the opportunities, which are promising to explore and may require more research activities.
CITATION STYLE
Xu, Y., & Lin, Q. (2020, March 1). Photodetectors based on solution-processable semiconductors: Recent advances and perspectives. Applied Physics Reviews. American Institute of Physics Inc. https://doi.org/10.1063/1.5144840
Mendeley helps you to discover research relevant for your work.