To overcome the problem that the horizontal resolution of global climate models may be too low to resolve features which are important at the regional or local scales, dynamical downscaling has been extensively used. However, dynamical downscaling results generally drift away from large-scale driving fields. The nudging technique can be used to balance the performance of dynamical downscaling at large and small scales, but the performances of the two nudging techniques (analysis nudging and spectral nudging) are debated. Moreover, dynamical downscaling is now performed at the convection-permitting scale to reduce the parameterization uncertainty and obtain the finer resolution. To compare the performances of the two nudging techniques in this study, three sensitivity experiments (with no nudging, analysis nudging, and spectral nudging) covering a period of two months with a grid spacing of 6 km over continental China are conducted to downscale the 1-degree National Centers for Environmental Prediction (NCEP) dataset with the Weather Research and Forecasting (WRF) model. Compared with observations, the results show that both of the nudging experiments decrease the bias of conventional meteorological elements near the surface and at different heights during the process of dynamical downscaling. However, spectral nudging outperforms analysis nudging for predicting precipitation, and analysis nudging outperforms spectral nudging for the simulation of air humidity and wind speed.
CITATION STYLE
Ma, Y., Yang, Y., Mai, X., Qiu, C., Long, X., & Wang, C. (2016). Comparison of Analysis and Spectral Nudging Techniques for Dynamical Downscaling with the WRF Model over China. Advances in Meteorology, 2016. https://doi.org/10.1155/2016/4761513
Mendeley helps you to discover research relevant for your work.