Characterization of Recombinant Mannan-Binding Lectin-Associated Serine Protease (MASP)-3 Suggests an Activation Mechanism Different from That of MASP-1 and MASP-2

  • Zundel S
  • Cseh S
  • Lacroix M
  • et al.
77Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

Abstract

Mannan-binding lectin (MBL)-associated serine proteases (MASP-1, -2, and -3) are homologous modular proteases that each associate with MBL and L- and H-ficolins, which are oligomeric serum lectins involved in innate immunity. To investigate its physicochemical, interaction, and enzymatic properties, human MASP-3 was expressed in insect cells. Ultracentrifugation analysis indicated that rMASP-3 sedimented as a homodimer (s20,w = 6.2 ± 0.1 S) in the presence of Ca2+, and as a monomer (s20,w = 4.6 ± 0.1 S) in EDTA. As shown by surface plasmon resonance spectroscopy, it associated with both MBL (KD = 2.6 nM) and L-ficolin (KD = 7.2 nM). The protease was produced in a single-chain, proenzyme form, but underwent slow activation upon prolonged storage at 4°C, resulting from cleavage at the Arg430-Ile431 activation site. Activation was prevented in the presence of protease inhibitors iodoacetamide and 1,10-phenanthroline but was not abolished upon substitution of Ala for the active site Ser645 of MASP-3, indicating extrinsic proteolysis. In contrast, the corresponding mutations Ser627→Ala in MASP-1 and Ser618→Ala in MASP-2 stabilized the latter in their proenzyme form. Likewise, the MASP-1 and MASP-2 mutants were each activated by their active counterparts, but MASP-3 S645A was not. Activated MASP-3 did not react with C1 inhibitor; had no activity on complement proteins C2, C4, and C3; and only cleaved the N-carboxybenzyloxyglycine-l-arginine thiobenzyl ester substrate to a significant extent. Based on these observations, it is postulated that MASP-3 activation and control involve mechanisms that are different from those of MASP-1 and -2.

Cite

CITATION STYLE

APA

Zundel, S., Cseh, S., Lacroix, M., Dahl, M. R., Matsushita, M., Andrieu, J.-P., … Thielens, N. M. (2004). Characterization of Recombinant Mannan-Binding Lectin-Associated Serine Protease (MASP)-3 Suggests an Activation Mechanism Different from That of MASP-1 and MASP-2. The Journal of Immunology, 172(7), 4342–4350. https://doi.org/10.4049/jimmunol.172.7.4342

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free