Cell-free systems are a widely used research tool in systems and synthetic biology and a promising platform for manufacturing of proteins and chemicals. In the past, cell-free biology was primarily used to better understand fundamental biochemical processes. Notably, E. coli cell-free extracts were used in the 1960s to decipher the sequencing of the genetic code. Since then, the transcription and translation capabilities of cell-free systems have been repeatedly optimized to improve energy efficiency and product yield. Today, cell-free systems, in combination with the rise of synthetic biology, have taken on a new role as a promising technology for just-in-time manufacturing of therapeutically important biologics and high-value small molecules. They have also been implemented at an industrial scale for the production of antibodies and cytokines. In this review, we discuss the evolution of cell-free technologies, in particular advancements in extract preparation, cell-free protein synthesis, and cell-free metabolic engineering applications. We then conclude with a discussion of the mathematical modeling of cell-free systems. Mathematical modeling of cell-free processes could be critical to addressing performance bottlenecks and estimating the costs of cell-free manufactured products.
CITATION STYLE
Vilkhovoy, M., Adhikari, A., Vadhin, S., & Varner, J. D. (2020, June 1). The evolution of cell free biomanufacturing. Processes. MDPI AG. https://doi.org/10.3390/PR8060675
Mendeley helps you to discover research relevant for your work.