A Simplified Grey Wolf Optimizer (SGWO) is suggested for resolving optimization tasks. The simplification in the original Grey Wolf Optimizer (GWO) method is introduced by ignoring the worst category wolves while giving priority to the better wolves during the search process. The advantage of the presented SGWO over GWO is a better solution taking less execution time and is demonstrated by taking unimodal, multimodal, and fixed dimension test functions. The results are also contrasted to the Gravitational Search Algorithm, the Particle Swarm Optimization, and the Sine Cosine Algorithm and this shows the superiority of the proposed SGWO technique. Practical application in a Distributed Power Generation System (DPGS) with energy storage is then considered by designing an Adaptive Fuzzy PID (AFPID) controller using the suggested SGWO method for frequency control. The DPGS contains renewable generation such as photovoltaic, wind, and storage elements such as battery and flywheel, in addition to plug-in electric vehicles. It is demonstrated that the SGWO method is superior to the GWO method in the optimal controller design task. It is also seen that SGWO based AFPID controller is highly efficacious in regulating the frequency compared to the standard PID controller. A sensitivity study is also performed to examine the impact of the unpredictability in the parameters of the investigated system on system performance. Finally, the novelty of the paper is demonstrated by comparing with the existing publications in an extensively used two-area test system.
CITATION STYLE
Padhy, S., & Panda, S. (2021). Application of a simplified Grey Wolf optimization technique for adaptive fuzzy PID controller design for frequency regulation of a distributed power generation system. Protection and Control of Modern Power Systems, 6(1). https://doi.org/10.1186/s41601-021-00180-4
Mendeley helps you to discover research relevant for your work.