Early production warnings are usually labor-intensive, even with remote sensing techniques in highly intensive but fragmented growing areas with various phenological stages. This study used high-resolution unmanned aerial vehicle (UAV) images with a ground sampling distance (GSD) of 3 cm to detect the plant body of pineapples. The detection targets were mature fruits mainly covered with two kinds of sun protection materials—round plastic covers and nets—which could be used to predict the yield in the next two to three months. For round plastic covers (hereafter referred to as wearing a hat), the Faster R-CNN was used to locate and count the number of mature fruits based on input image tiles with a size of 256 × 256 pixels. In the case of intersection-over-union (IoU) > 0.5, the F1-score of the hat wearer detection results was 0.849, the average precision (AP) was 0.739, the precision was 0.990, and the recall was 0.743. We used the Mask R-CNN model for other mature fruits to delineate the fields covered with nets based on input image tiles with a size of 2000 × 2000 pixels and a mean IoU (mIoU) of 0.613. Zonal statistics summed up the area with the number of fields wearing a hat and covered with nets. Then, the thresholding procedure was used to solve the potential issue of farmers’ harvesting in different batches. In pineapple cultivation fields, the zonal results revealed that the overall classification accuracy is 97.46%, and the kappa coefficient is 0.908. The results were expected to demonstrate the critical factors of yield estimation and provide researchers and agricultural administration with similar applications to give early warnings regarding production and adjustments to marketing.
CITATION STYLE
Shiu, Y. S., Lee, R. Y., & Chang, Y. C. (2023). Pineapples’ Detection and Segmentation Based on Faster and Mask R-CNN in UAV Imagery. Remote Sensing, 15(3). https://doi.org/10.3390/rs15030814
Mendeley helps you to discover research relevant for your work.