Obstructive sleep apnoea (OSA) is increasingly associated with insulin resistance. The underlying pathophysiology remains unclear but intermittent hypoxia (IH)-mediated inflammation and subsequent dysfunction of the adipose tissue has been hypothesised to play a key role. We tested this hypothesis employing a comprehensive translational approach using a murine IH model of lean and diet-induced obese mice, an innovative IH system for cell cultures and a tightly controlled patient cohort. IH led to the development of insulin resistance in mice, corrected for the degree of obesity, and reduced insulin-mediated glucose uptake in 3T3-L1 adipocytes, associated with inhibition of the insulin-signalling pathway and downregulation of insulin-receptor substrate-1 mRNA. Providing mechanistic insight, IH induced a pro-inflammatory phenotype of visceral adipose tissue in mice with pro-inflammatory M1 macrophage polarisation correlating with the severity of insulin resistance. Complimentary in vitro analysis demonstrated that IH led to M1 polarisation of THP1-derived macrophages. In subjects without comorbidities (n=186), OSA was independently associated with insulin resistance. Furthermore, we found an independent correlation of OSA severity with the M1 macrophage inflammatory marker sCD163. This study provides evidence that IH induces a pro-inflammatory phenotype of the adipose tissue, which may be a crucial link between OSA and the development of insulin resistance.
CITATION STYLE
Murphy, A. M., Thomas, A., Crinion, S. J., Kent, B. D., Tambuwala, M. M., Fabre, A., … Ryan, S. (2017). Intermittent hypoxia in obstructive sleep apnoea mediates insulin resistance through adipose tissue inflammation. European Respiratory Journal, 49(4). https://doi.org/10.1183/13993003.01731-2016
Mendeley helps you to discover research relevant for your work.