Eco-system optimal time-dependent flow assignment in a congested network

Citations of this article
Mendeley users who have this article in their library.


This research addresses the eco-system optimal dynamic traffic assignment (ESODTA) problem which aims to find system optimal eco-routing or green routing flows that minimize total vehicular emission in a congested network. We propose a generic agent-based ESODTA model and a simplified queueing model (SQM) that is able to clearly distinguish vehicles’ speed in free-flow and congested conditions for multi-scale emission analysis, and facilitates analyzing the relationship between link emission and delay. Based on the SQM, an expanded space-time network is constructed to formulate the ESODTA with constant bottleneck discharge capacities. The resulting integer linear model of the ESODTA is solved by a Lagrangian relaxation-based algorithm. For the simulation-based ESODTA, we present the column-generation-based heuristic, which requires link and path marginal emissions in the embedded time-dependent least-cost path algorithm and the gradient-projection-based descent direction method. We derive a formula of marginal emission which encompasses the marginal travel time as a special case, and develop an algorithm for evaluating path marginal emissions in a congested network. Numerical experiments are conducted to demonstrate that the proposed algorithm is able to effectively obtain coordinated route flows that minimize the system-wide vehicular emission for large-scale networks.




Lu, C. C., Liu, J., Qu, Y., Peeta, S., Rouphail, N. M., & Zhou, X. (2016). Eco-system optimal time-dependent flow assignment in a congested network. Transportation Research Part B: Methodological, 94, 217–239.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free