Overexpression of FGF9 in colon cancer cells is mediated by hypoxia-induced translational activation

43Citations
Citations of this article
54Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Human fibroblast growth factor 9 (FGF9) is a potent mitogen involved in many physiological processes. Although FGF9 messenger RNA (mRNA) is ubiquitously expressed in embryos, FGF9 protein expression is generally low and restricted to a few adult organs. Aberrant expression of FGF9 usually results in human malignancies including cancers, but the mechanism remains largely unknown. Here, we report that FGF9 protein, but not mRNA, was increased in hypoxia. Two sequence elements, the upstream open reading frame (uORF) and the internal ribosome entry site (IRES), were identified in the 5' UTR of FGF9 mRNA. Functional assays indicated that FGF9 protein synthesis was normally controlled by uORF-mediated translational repression, which kept the protein at a low level, but was upregulated in response to hypoxia through a switch to IRES-dependent translational control. Our data demonstrate that FGF9 IRES functions as a cellular switch to turn FGF9 protein synthesis 'on' during hypoxia, a likely mechanism underlying FGF9 overexpression in cancer cells. Finally, we provide evidence to show that hypoxia-induced translational activation promotes FGF9 protein expression in colon cancer cells. Altogether, this dynamic working model may provide a new direction in anti-tumor therapies and cancer intervention. © The Author(s) 2013.

Cite

CITATION STYLE

APA

Chen, T. M., Shih, Y. H., Tseng, J. T., Lai, M. C., Wu, C. H., Li, Y. H., … Sun, H. S. (2014). Overexpression of FGF9 in colon cancer cells is mediated by hypoxia-induced translational activation. Nucleic Acids Research, 42(5), 2932–2944. https://doi.org/10.1093/nar/gkt1286

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free