Overexpression of miR-10a-5p facilitates the progression of osteoarthritis

11Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

The current study was aimed at exploring the potential roles and possible mechanisms of miR-10a-5p in osteoarthritis (OA). We performed RT-qPCR, Western blot, CCK8, EdU Assay, and flow cytometry assay to clarify the roles of miR-10a-5p in OA. Furthermore, the whole transcriptome sequencing together with integrated bioinformatics analyses were conducted to elucidate the underlying mechanisms of miR-10a-5p involving in OA. Our results demonstrated that miR-10a-5p was upregulated in OA and acted as a significant contributing factor for OA. A large number of circRNAs, lncRNAs, miRNAs, and mRNAs were identified by overexpressing miR-10a-5p. Functional enrichment analyses indicated that these differentially-expressed genes were enriched in some important terms including PPAR signaling pathway, PI3K-Akt signaling pathway, and p53 signaling pathway. A total of 42 hub genes were identified in the protein-protein interaction network including SERPINA1, TTR, APOA1, and A2M. Also, we constructed the network regulatory interactions across coding and noncoding RNAs triggered by miR-10a-5p, which revealed the powerful regulating effects of miR-10a-5p. Moreover, we found that HOXA3 acted as the targeted genes of miR-10a-5p and miR-10a-5p contributed to the progression of OA by suppressing HOXA3 expression. Our findings shed insight on regulatory mechanisms of miR-10a-5p, which might provide novel therapeutic targets for OA. The current study was aimed at exploring the potential roles and possible mechanisms of miR-10a-5p in osteoarthritis (OA). We performed RT-qPCR, Western blot, CCK8, EdU Assay, and flow cytometry assay to clarify the roles of miR-10a-5p in OA. Furthermore, the whole transcriptome sequencing together with integrated bioinformatics analyses were conducted to elucidate the underlying mechanisms of miR-10a-5p involving in OA. Our results demonstrated that miR-10a-5p was upregulated in OA and acted as a significant contributing factor for OA. A large number of circRNAs, lncRNAs, miRNAs, and mRNAs were identified by overexpressing miR-10a-5p. Functional enrichment analyses indicated that these differentially-expressed genes were enriched in some important terms including PPAR signaling pathway, PI3K-Akt signaling pathway, and p53 signaling pathway. A total of 42 hub genes were identified in the protein-protein interaction network including SERPINA1, TTR, APOA1, and A2M. Also, we constructed the network regulatory interactions across coding and noncoding RNAs triggered by miR-10a-5p, which revealed the powerful regulating effects of miR-10a-5p. Moreover, we found that HOXA3 acted as the targeted genes of miR-10a-5p and miR-10a-5p contributed to the progression of OA by suppressing HOXA3 expression. Our findings shed insight on regulatory mechanisms of miR-10a-5p, which might provide novel therapeutic targets for OA.

Cite

CITATION STYLE

APA

Li, H. Z., Xu, X. H., Lin, N., Wang, D. W., Lin, Y. M., Su, Z. Z., & Lu, H. D. (2020). Overexpression of miR-10a-5p facilitates the progression of osteoarthritis. Aging, 12(7), 5948–5976. https://doi.org/10.18632/aging.102989

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free