The internet is an abundant source of news every day. Thus, efficient algorithms to extract keywords from the text are important to obtain information quickly. However, the precision and recall of mature keyword extraction algorithms need improvement. TextRank, which is derived from the PageRank algorithm, uses word graphs to spread the weight of words. The keyword weight propagation in TextRank focuses only on word frequency. To improve the performance of the algorithm, we propose Semantic Clustering TextRank (SCTR), a semantic clustering news keyword extraction algorithm based on TextRank. Firstly, the word vectors generated by the Bidirectional Encoder Representation from Transformers (BERT) model are used to perform k-means clustering to represent semantic clustering. Then, the clustering results are used to construct a TextRank weight transfer probability matrix. Finally, iterative calculation of word graphs and extraction of keywords are performed. The test target of this experiment is a Chinese news library. The results of the experiment conducted on this text set show that the SCTR algorithm has greater precision, recall, and F1 value than the traditional TextRank and Term Frequency-Inverse Document Frequency (TF-IDF) algorithms.
CITATION STYLE
Xiong, A., Liu, D., Tian, H., Liu, Z., Yu, P., & Kadoch, M. (2021). News keyword extraction algorithm based on semantic clustering and word graph model. Tsinghua Science and Technology, 26(6), 886–893. https://doi.org/10.26599/TST.2020.9010051
Mendeley helps you to discover research relevant for your work.