News keyword extraction algorithm based on semantic clustering and word graph model

40Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

The internet is an abundant source of news every day. Thus, efficient algorithms to extract keywords from the text are important to obtain information quickly. However, the precision and recall of mature keyword extraction algorithms need improvement. TextRank, which is derived from the PageRank algorithm, uses word graphs to spread the weight of words. The keyword weight propagation in TextRank focuses only on word frequency. To improve the performance of the algorithm, we propose Semantic Clustering TextRank (SCTR), a semantic clustering news keyword extraction algorithm based on TextRank. Firstly, the word vectors generated by the Bidirectional Encoder Representation from Transformers (BERT) model are used to perform k-means clustering to represent semantic clustering. Then, the clustering results are used to construct a TextRank weight transfer probability matrix. Finally, iterative calculation of word graphs and extraction of keywords are performed. The test target of this experiment is a Chinese news library. The results of the experiment conducted on this text set show that the SCTR algorithm has greater precision, recall, and F1 value than the traditional TextRank and Term Frequency-Inverse Document Frequency (TF-IDF) algorithms.

Cite

CITATION STYLE

APA

Xiong, A., Liu, D., Tian, H., Liu, Z., Yu, P., & Kadoch, M. (2021). News keyword extraction algorithm based on semantic clustering and word graph model. Tsinghua Science and Technology, 26(6), 886–893. https://doi.org/10.26599/TST.2020.9010051

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free