Synthesis and Evaluation of a Silver Nanoparticle/Polyurethane Composite That Exhibits Antiviral Activity against SARS-CoV-2

11Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

In this proof-of-concept study, we aim to produce a polyurethane (PU)-based composite that can reduce the amount of viable SARS-CoV-2 virus in contact with the surface of the polymeric film without further interventions such as manual cleaning. Current protocols for maintaining the hygiene of commonly used touchpoints (door handles, light switches, shop counters) typically rely on repeated washing with antimicrobial products. Since the start of the SARS-CoV-2 pandemic, frequent and costly surface sanitization by workers has become standard procedure in many public areas. Therefore, materials that can be retrofitted to touchpoints, yet inhibit pathogen growth for extended time periods are an important target. Herein, we design and synthesise the PU using a one-pot synthetic procedure on a multigram scale from commercial starting materials. The PU forms a robust composite thin film when loaded with 10 wt% silver nanoparticles (AgNPs). The addition of AgNPs increases the ultimate tensile strength, modules of toughness and modulus of elasticity at the cost of a reduced elongation at break when compared to the pristine PU. Comparative biological testing was carried out by the addition of pseudotyped virus (PV) bearing the SARS-CoV-2 beta (B.1.351) VOC spike protein onto the film surfaces of either the pristine PU or the PU nanocomposite. After 24 h without further human intervention the nanocomposite reduced the amount of viable virus by 67% (p = 0.0012) compared to the pristine PU treated under the same conditions. The significance of this reduction in viable virus load caused by our nanocomposite is that PUs form the basis of many commercial paints and coatings. Therefore, we envisage that this work will provide the basis for further progress towards producing a retrofittable surface that can be applied to a wide variety of common touchpoints.

Cite

CITATION STYLE

APA

Lam, W. T., Babra, T. S., Smith, J. H. D., Bagley, M. C., Spencer, J., Wright, E., & Greenland, B. W. (2022). Synthesis and Evaluation of a Silver Nanoparticle/Polyurethane Composite That Exhibits Antiviral Activity against SARS-CoV-2. Polymers, 14(19). https://doi.org/10.3390/polym14194172

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free