Background kalirin RhoGEF kinase (KALRN) is mutated in a wide range of cancers. Nevertheless, the association between KALRN mutations and the pathogenesis of cancer remains unexplored. Identification of biomarkers for cancer immunotherapy response is crucial because immunotherapies only show beneficial effects in a subset of patients with cancer. Methods We explored the correlation between KALRN mutations and antitumor immunity in 10 cancer cohorts from The Cancer Genome Atlas program by the bioinformatics approach. Moreover, we verified the findings from the bioinformatics analysis with in vitro and in vivo experiments. We explored the correlation between KALRN mutations and immunotherapy response in five cancer cohorts receiving immune checkpoint blockade therapy. Results Antitumor immune signatures were more enriched in KALRN-mutated than KALRN-wildtype cancers. Moreover, KALRN mutations displayed significant correlations with increased tumor mutation burden and the microsatellite instability or DNA damage repair deficiency genomic properties, which may explain the high antitumor immunity in KALRN-mutated cancers. Also, programmed cell death 1 ligand (PD-L1) expression was markedly upregulated in KALRN-mutated versus KALRN-wildtype cancers. The increased antitumor immune signatures and PD-L1 expression in KALRN-mutated cancers may favor the response to immune checkpoint blockade therapy in this cancer subtype, as evidenced in five cancer cohorts receiving antiprogrammed cell death protein 1 (PD-1)/PD-L1/cytotoxic T-lymphocyte-Associated protein 4 (CTLA-4) immunotherapy. Furthermore, the significant association between KALRN mutations and increased antitumor immunity was associated with the fact that KALRN mutations compromised the function of KALRN in targeting Rho GTPases for the regulation of DNA damage repair pathways. In vitro and in vivo experiments validated the association of KALRN deficiency with antitumor immunity and the response to immune checkpoint inhibitors. Conclusions The KALRN mutation is a useful biomarker for predicting the response to immunotherapy in patients with cancer.
CITATION STYLE
Li, M., Ma, Y., Zhong, Y., Liu, Q., Chen, C., Qiang, L., & Wang, X. (2020). KALRN mutations promote antitumor immunity and immunotherapy response in cancer. Journal for ImmunoTherapy of Cancer, 8(2). https://doi.org/10.1136/jitc-2019-000293
Mendeley helps you to discover research relevant for your work.