Impact of implementing emergency demand response program and tie-line on cyber-physical distribution network resiliency

6Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Recently, due to the complex nature of cyber-physical distribution networks (DNs) and the severity of power outages caused by natural disasters, microgrid (MG) formation, distributed renewable energy resources (DRERs), and demand response programs (DRP) have been employed to enhance the resiliency of these networks. This paper proposes a novel multi-objective MGs formation method-based darts game theory optimization algorithm. The microgrid formation is obtained by controlling the sectionalizing and tie-line switches. The network graph theory is used to represent the constructed microgrid, and the non-linear equations of power flow and loss calculations are adopted in the microgrid formation model. To measure the system's resiliency under extreme disaster events, metrics are utilized to prove the system's flexibility and resiliency. The modified IEEE 33-bus test system is designed to validate the proposed approach's effectiveness. Three case studies are performed with and without considering the emergency demand response program (EDRP) and tie-lines.

Cite

CITATION STYLE

APA

Osman, S. R., Sedhom, B. E., & Kaddah, S. S. (2023). Impact of implementing emergency demand response program and tie-line on cyber-physical distribution network resiliency. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-30746-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free