Metabolic plasticity in cell state homeostasis and differentiation of cultured human corneal endothelial cells

23Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

PURPOSE. To clarify whether cultured human corneal endothelial cells (cHCECs), heterogeneous in their differentiation state, exhibit distinctive energy metabolism with the aim to develop a reliable method to sort cHCECs applicable for regenerative medicine. METHODS. The presence of cHCEC subpopulations (SPs) was verified via surface cluster-ofdifferentiation (CD) marker expression. Cultured HCEC metabolic extracts or corresponding culture supernatants with distinctive cellular phenotypes in regard to energy-metabolism–related functional markers c-Myc and CD44 were prepared and analyzed via capillary electrophoresis–tandem mass spectrometry. The metabolic requirements of heterogeneous SPs of cHCECs were also investigated. RESULTS. After successfully discriminating SPs, as verified via surface CD markers in terms of their secretory metabolites, we found that the CD44+++ SP with cell-state transition (CST) exhibited disposition for anaerobic glycolysis, whereas the CD44‒SP without CST was disposed to mitochondria-dependent oxidative phosphorylation (OXPHOS). These results raised the possibility of establishing effective culture conditions to selectively expand mature cHCECs with a hexagonal cobblestone shape and inclination for mitochondria-dependent OXPHOS. CONCLUSIONS. The findings of this study open a pathway for monitoring the disposition of cHCECs via their energy metabolism, thus leading to safe and stable regenerative medicine by use of metabolically defined cHCECs in cell-suspension form.

Cite

CITATION STYLE

APA

Hamuro, J., Ueno, M., Asada, K., Toda, M., Montoya, M., Sotozono, C., & Kinoshita, S. (2016). Metabolic plasticity in cell state homeostasis and differentiation of cultured human corneal endothelial cells. Investigative Ophthalmology and Visual Science, 57(10), 4452–4463. https://doi.org/10.1167/iovs.16-19807

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free