Optimization Design of a Riser-Drill String Coupling System Based on CAE Techniques

3Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In a riser-drill string coupling system, the drill string extends from platform to downhole, and its exterior tube is divided by mud line into two parts: riser for upside and borehole for downside. Due to such a pipe-in-pipe structure, an improved dynamic model is proposed to take the multipoint interactions between the inner and outer pipes into consideration. The dynamic responses of this system are analyzed by Computer Aided Engineering (CAE) techniques; specifically, it is numerically simulated in Abaqus; then, both the parametric sensitivity analysis and the main effect analysis are carried out in Isight to determine the optimization parameters and the optimization strategy.Moreover, six-sigma algorithm in Isight is applied to simultaneously drive the neighborhood cultivation genetic algorithm (NCGA) to conduct multiobjective optimization and drive the Monte Carlo method to analyze the stability of the obtained optimal solution. Based on the above investigations, a software package is developed via the secondary developments of both Abaqus and Isight. By this way, the optimization design of the riser-drill string coupling system based on dynamic analysis can be conducted effectively and efficiently.

Cite

CITATION STYLE

APA

Qin, S., Wang, R., Fu, D., & Wang, G. (2021). Optimization Design of a Riser-Drill String Coupling System Based on CAE Techniques. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/6659632

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free