Learning Electron Densities in the Condensed Phase

33Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We introduce a local machine-learning method for predicting the electron densities of periodic systems. The framework is based on a numerical, atom-centered auxiliary basis, which enables an accurate expansion of the all-electron density in a form suitable for learning isolated and periodic systems alike. We show that, using this formulation, the electron densities of metals, semiconductors, and molecular crystals can all be accurately predicted using symmetry-adapted Gaussian process regression models, properly adjusted for the nonorthogonal nature of the basis. These predicted densities enable the efficient calculation of electronic properties, which present errors on the order of tens of meV/atom when compared to ab initio density-functional calculations. We demonstrate the key power of this approach by using a model trained on ice unit cells containing only 4 water molecules to predict the electron densities of cells containing up to 512 molecules and see no increase in the magnitude of the errors of derived electronic properties when increasing the system size. Indeed, we find that these extrapolated derived energies are more accurate than those predicted using a direct machine-learning model. Finally, on heterogeneous data sets SALTED can predict electron densities with errors below 4%.

Cite

CITATION STYLE

APA

Lewis, A. M., Grisafi, A., Ceriotti, M., & Rossi, M. (2021). Learning Electron Densities in the Condensed Phase. Journal of Chemical Theory and Computation, 17(11), 7203–7214. https://doi.org/10.1021/acs.jctc.1c00576

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free