FP-LMTO study of structural, electronic, thermodynamic and optical properties of MgxCd1-xSe alloys

4Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Structural, electronic and optical properties of MgxCd1-xSe (0 ≤ x ≤ 1) are calculated for the first time using density functional theory. Our results show that these properties are strongly dependent on molar fraction of particular components - x. The bond between Cd and Se is partially covalent and the covalent nature of the bond decreases as the concentration of Mg increases from 0 % to 100 %. It is found that MgxCd1-xSe has a direct band gap in the entire range of x and the band gap of the alloy increases from 0.43 to 2.46 eV with the increase in Mg concentration. Frequency dependent dielectric constants ε1(ω), ε2(ω) refractive index n(ω) are also calculated and discussed in detail. The peak value of refractive indices shifts to higher energy regions with the increase in Mg. The larger value of the extraordinary refractive index confirms that the material is a positive birefringence crystal. The present comprehensive theoretical study of the optoelectronic properties of the material predicts that it can be effectively used in optoelectronic applications in the wide range of spectra: IR, visible and UV. In addition, we have also predicted the heat capacities (CV ), the entropy (S), the internal energy (U) and the Helmholtz free energy (F) of MgxCd1-xSe ternary alloys.

Cite

CITATION STYLE

APA

Bensaid, D., Ameri, M., Din El Hanani, M., Azaz, Y., Bendouma, D., Al-Douri, Y., & Ameri, I. (2014). FP-LMTO study of structural, electronic, thermodynamic and optical properties of MgxCd1-xSe alloys. Materials Science- Poland, 32(4), 719–728. https://doi.org/10.2478/s13536-014-0254-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free