We present apparatus that allows in-situ optical measurements of the evolving real contact area between a rigid glass and a deformable Al6026 surface with 700 nm of lateral and 20 nm of vertical resolution. In previous experimental studies of multi-asperity real contact area this was investigated either with much less accuracy or did not include the full (loaded) nominal contact area, which can hinder the relevant sub-micron deformation phenomena. During experiments involving the real contact area, the contact load and asperity deformations are simultaneously measured. To show the relevance of the developed experimental procedure measurements are compared to the results calculated with the Greenwood-Williamson (GW) and a modified Abbott-Firestone (AF(H)) models, which represent the two extreme deformation-regime models. The AF(H) model shows relatively good agreement between the real contact area and the asperity deformations (< 60 %), while the GW model deviates by up to 10 times, depending on the deformation value. In contrast, the GW model shows better agreement for the relationship between the contact load and the asperity deformation (< 20 %), while the AF(H) deviates by more, approximately 30 %. The results also indicate that the real contact area is a non-linear function of the contact load, while theoretical models predict their linearity. Finally, it is demonstrated that the real contact area reaches only up to 9 % of the nominal value in the loading range up to the material yield strength, as calculated for the nominal contact parameters.
CITATION STYLE
Žugelj, B. B., & Kalin, M. (2017). In-situ Observations of a Multi-Asperity Real Contact Area on a Submicron Scale. Strojniski Vestnik/Journal of Mechanical Engineering, 63(6), 351–362. https://doi.org/10.5545/sv-jme.2017.4366
Mendeley helps you to discover research relevant for your work.