The quest for generating novel chemistry knowledge is critical in scientific advancement, and machine learning (ML) has emerged as an asset in this pursuit. Through interpolation among learned patterns, ML can tackle tasks that were previously deemed demanding to machines. This distinctive capacity of ML provides invaluable aid to bench chemists in their daily work. However, current ML tools are typically designed to prioritize experiments with the highest likelihood of success, i.e., higher predictive confidence. In this perspective, we build on current trends that suggest a future in which ML could be just as beneficial in exploring uncharted search spaces through simulated curiosity. We discuss how low and ‘negative’ data can catalyse one-/few-shot learning, and how the broader use of curious ML and novelty detection algorithms can propel the next wave of chemical discoveries. We anticipate that ML for curiosity-driven research will help the community overcome potentially biased assumptions and uncover unexpected findings in the chemical sciences at an accelerated pace.
CITATION STYLE
Bustillo, L., Laino, T., & Rodrigues, T. (2023, September 8). The rise of automated curiosity-driven discoveries in chemistry. Chemical Science. Royal Society of Chemistry. https://doi.org/10.1039/d3sc03367h
Mendeley helps you to discover research relevant for your work.