Previous studies have shown that porcine aortic smooth muscle cells (SMCs) secrete two insulin-like growth factor-binding proteins (IGFBP), IGFBP-2 and -4, and that these IGFBPs modulate IGF-I-stimulated SMC proliferation and migration. In this study we demonstrate that porcine SMCs express IGFBP-5 mRNA and synthesize and secrete the protein. In this cell type, the biosynthesis of IGFBP-5 is up-regulated by IGF-I. This increase in IGFBP-5 synthesis is accompanied by an increase in the steady-state mRNA levels. The induction of IGFBP-5 mRNA by IGF-I is time- and dose-dependent and requires de novo protein synthesis. IGF-II and insulin also increase IGFBP-5 mRNA levels at high doses. An IGF-I analog with normal affinity for the IGF-I receptor but reduced affinity for IGFBPs evokes a similar increase. Another analog that binds to IGFBPs but not to the receptor has no effect, indicating that this effect of IGF-I is mediated through the IGF-I receptor. The IGF-I- induced IGFBP-5 gene expression is cell type-specific because IGF-I had no such effect in other cell types examined. Nuclear run-on assays revealed that IGF-I increased transcription rate of the IGFBP-5 gene, while IGF-I did not change the IGFBP-5 mRNA stability. Furthermore, the IGFBP-5 promoter was 3.5- fold more active in directing expression of the luciferase reporter gene in IGF-I-treated aortic SMCs as compared to control cells, whereas the luciferase activity remained the same in control- and IGF-I-treated fibroblasts. These results suggest that IGF-I up-regulates IGFBP-5 synthesis by transcriptionally activating the IGFBP-5 gene in aortic SMCs.
CITATION STYLE
Duan, C., Hawes, S. B., Prevette, T., & Clemmons, D. R. (1996). Insulin-like growth factor-I (IGF-I) regulates IGF-binding protein-5 synthesis through transcriptional activation of the gene in aortic smooth muscle cells. Journal of Biological Chemistry, 271(8), 4280–4288. https://doi.org/10.1074/jbc.271.8.4280
Mendeley helps you to discover research relevant for your work.