Activation of adenosine A1 receptors raised spike thresholds and induced a dissociation of excitatory postsynaptic potential (EPSP) spike coupling in hippocampal pyramidal neurones. This effect could be prevented by activation of A2A adenosine receptors. The A1 receptor agonist N6-cyclopentyladenosine caused a dissociation of the EPSP spike coupling recorded extracellularly and increased the threshold for spike generation measured intracellularly. These effects were prevented by the A 2A receptor agonist CGS21680. A series of agents interfering with adenylate cyclase activity, protein kinase A or C, or nitric oxide synthase had no effect on these responses to N6-cyclopentyladenosine. Superfusion with barium or glibenclamide prevented both the dissociation of EPSP spike coupling and the increase of spike threshold. It is concluded that a barium- and glibenclamide-sensitive potassium current may be involved in the postsynaptic effects of A1 receptors on spike threshold, and it is suggested that a similar suppression of a potassium current by A2A receptors could underlie the inhibition of A1 receptor responses. Copyright © 2004 S. Karger AG, Basel.
CITATION STYLE
O’Kane, E. M., & Stone, T. W. (2004). Barium, glibenclamide and CGS21680 prevent adenosine A1 receptor changes of ES coupling and spike threshold. NeuroSignals, 13(6), 318–324. https://doi.org/10.1159/000081967
Mendeley helps you to discover research relevant for your work.