Geometrically engineered rigid island array for stretchable electronics capable of withstanding various deformation modes

59Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Integration of rigid components in soft polymer matrix is considered as the most feasible architecture to enable stretchable electronics. However, a method of suppressing cracks at the interface between soft and rigid materials due to excessive and repetitive deformations of various types remains a formidable challenge. Here, we geometrically engineered Ferris wheel–shaped islands (FWIs) capable of effectively suppressing crack propagation at the interface under various deformation modes (stretching, twisting, poking, and crumpling). The optimized FWIs have notable increased strain at failure and fatigue life compared with conventional circle- and square-shaped islands. Stretchable electronics composed of various rigid components (LED and coin cell) were demonstrated using intrinsically stretchable printed electrodes. Furthermore, electronic skin capable of differentiating various tactile stimuli without interference was demonstrated. Our method enables stretchable electronics that can be used under various geometrical forms with notable enhanced durability, enabling stretchable electronics to withstand potentially harsh conditions of everyday usage.

Cite

CITATION STYLE

APA

Yang, J. C., Lee, S., Ma, B. S., Kim, J., Song, M., Kim, S. Y., … Park, S. (2022). Geometrically engineered rigid island array for stretchable electronics capable of withstanding various deformation modes. Science Advances, 8(22). https://doi.org/10.1126/sciadv.abn3863

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free