The rapid development of the fifth generation technology poses more challenges in the human motion inspection field. In this study, a nanogenerator, made by PVDF, ionic hydrogel, and PDMS, is used. Furthermore, a transparent, stretchable, and biocompatible PENG (TSB-PENG) is presented, which can be used as a self-powered sensor attached to the athlete’s joints, which helps to monitor the training and improve the subject’s performance. This device shows the ability to maintain a relatively stable output, under various external environments (e.g., inorganic salt, or-ganic matter and temperature). Additionally, TSB-PENG can supply power to small-scale electronic equipment, such as Bluetooth transmitting motion data in real time. This study can provide a new approach to designing lossless, real-time, portable, and durable self-powered sensors in the sports motoring field.
CITATION STYLE
Jia, C., Zhu, Y., Sun, F., Zhao, T., Xing, R., Mao, Y., & Zhao, C. (2021). A flexible and stretchable self-powered nanogenerator in basketball passing technology monitoring. Electronics (Switzerland), 10(21). https://doi.org/10.3390/electronics10212584
Mendeley helps you to discover research relevant for your work.