In this chapter, we address the problem of biometric identity recognition from the vasculature of the human sclera. Specifically, we focus on the challenging task of multi-view sclera recognition, where the visible part of the sclera vasculature changes from image to image due to varying gaze (or view) directions. We propose a complete solution for this task built around Convolutional Neural Networks (CNNs) and make several contributions that result in state-of-the-art recognition performance, i.e.: (i) we develop a cascaded CNN assembly that is able to robustly segment the sclera vasculature from the input images regardless of gaze direction, and (ii) we present ScleraNET, a CNN model trained in a multi-task manner (combining losses pertaining to identity and view-direction recognition) that allows for the extraction of discriminative vasculature descriptors that can be used for identity inference. To evaluate the proposed contributions, we also introduce a new dataset of ocular images, called the Sclera Blood Vessels, Periocular and Iris (SBVPI) dataset, which represents one of the few publicly available datasets suitable for research in multi-view sclera segmentation and recognition. The datasets come with a rich set of annotations, such as a per-pixel markup of various eye parts (including the sclera vasculature), identity, gaze-direction and gender labels. We conduct rigorous experiments on SBVPI with competing techniques from the literature and show that the combination of the proposed segmentation and descriptor-computation models results in highly competitive recognition performance.
CITATION STYLE
Rot, P., Vitek, M., Grm, K., Emeršič, Ž., Peer, P., & Štruc, V. (2020). Deep Sclera Segmentation and Recognition. In Advances in Computer Vision and Pattern Recognition (pp. 395–432). Springer. https://doi.org/10.1007/978-3-030-27731-4_13
Mendeley helps you to discover research relevant for your work.