Background: Cervical small cell neuroendocrine carcinoma (SCNC) is a rare and aggressive disease that lacks a standard treatment strategy or effective methods of targeted therapy. PD-L1 inhibitors for DNA mismatch repair system-deficient (dMMR) tumors and neurotrophin receptor tyrosine kinase (NTRK) inhibitors offer potential pan-cancer treatments. Methods: Immunohistochemistry was employed as the main detection method, and any NTRK positive cases, identified by immunohistochemistry, were further submitted for evaluation by fluorescence in situ hybridization (FISH) and real-time polymerase chain reaction (RT-PCR) methods. Results: Forty-six patients were enrolled. Positive PD-L1 expression was seen in 22 of the 43 patients (51.16%) with an average combined positive score of 6.82. PD-L1-positive patients were more likely to have a higher proliferation rate in the tumor, and they experienced less recurrence and death (p = 0.048 and 0.033, respectively) compared with the patients with negative PD-L1 expression. However, in the multivariate analysis, none of the clinical parameters was associated with the expression of PD-L1. There was no association between PD-L1 expression and disease recurrence or overall survival in the Kaplan-Meier analysis. All cases were found to be MMR-stable and lacked NTRK gene fusion. However, pan-Trk expressed in 14 (32.56%) of the 43 tested cases, but FISH and RT-PCR failed to confirm any positive fusion signals in IHC-positive cases. Conclusions: PD-L1 may be an effective therapeutic target for cervical SCNC. Cervical SCNC is a MMR-stable tumor and lacks NTRK gene fusion. IHC isn’t a reliable method in the detection of NTRK gene fusion in cervical SCNC.
CITATION STYLE
Chen, L., Yang, F., Feng, T., Wu, S., Li, K., Pang, J., … Liang, Z. (2021). PD-L1, Mismatch Repair Protein, and NTRK Immunohistochemical Expression in Cervical Small Cell Neuroendocrine Carcinoma. Frontiers in Oncology, 11. https://doi.org/10.3389/fonc.2021.752453
Mendeley helps you to discover research relevant for your work.