Maljkovic and Nakayama first showed that visual search efficiency can be influenced by priming effects. Even "pop-out" targets (defined by unique color) are judged quicker if they appear at the same location and/or in the same color as on the preceding trial, in an unpredictable sequence. Here, we studied the potential neural correlates of such priming in human visual search using functional magnetic resonance imaging (fMRI). We found that repeating either the location or the color of a singleton target led to repetition suppression of blood oxygen level-dependent (BOLD) activity in brain regions traditionally linked with attentional control, including bilateral intraparietal sulci. This indicates that the attention system of the human brain can be "primed," in apparent analogy to repetition-suppression effects on activity in other neural systems. For repetition of target color but not location, we also found repetition suppression in inferior temporal areas that may be associated with color processing, whereas repetition of target location led to greater reduction of activation in contralateral inferior parietal and frontal areas, relative to color repetition. The frontal eye fields were also implicated, notably when both target properties (color and location) were repeated together, which also led to further BOLD decreases in anterior fusiform cortex not seen when either property was repeated alone. These findings reveal the neural correlates for priming of pop-out search, including commonalities, differences, and interactions between location and color repetition. fMRI repetition-suppression effects may arise in components of the attention network because these settle into a stable "attractor state" more readily when the same target property is repeated than when a different attentional state is required.
CITATION STYLE
Kristjánsson, Á., Vuilleumier, P., Schwartz, S., MacAluso, E., & Driver, J. (2007). Neural basis for priming of pop-out during visual search revealed with fMRI. Cerebral Cortex, 17(7), 1612–1624. https://doi.org/10.1093/cercor/bhl072
Mendeley helps you to discover research relevant for your work.