Effect of overcharge on Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium ion cells with poly(vinylidene fluoride) binder. III — Chemical changes in the cathode

10Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

1.5 Ah pouch cells based on Li(Ni0.5Mn0.3Co0.2)O2 cathodes and graphite anodes, both containing poly (vinylidene fluoride) (PVDF) binders, were systematically overcharged to 100, 120, 140, 160, 180, and 250% state of charge (SOC), at which point they vented. The cells were subsequently discharged to 0% SOC and disassembled under an inert atmosphere for characterization. A combination of X-ray photoelectron spectroscopy (XPS), scanning-electron microscopy (SEM), energy-dispersive spectroscopy (EDS), 6Li SSNMR, and X-ray diffraction (XRD) analysis of the NMC532 cathodes indicates the formation of a thin C- and O-rich cathode electrolyte interphase layer, progressive Li loss above 140% SOC, and retention of the bulk crystal structure at all states of charge.

Cite

CITATION STYLE

APA

Bareño, J., Dietz Rago, N., Dogan, F., Graczyk, D. G., Tsai, Y., Naik, S. R., … Bloom, I. (2018). Effect of overcharge on Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium ion cells with poly(vinylidene fluoride) binder. III — Chemical changes in the cathode. Journal of Power Sources, 385, 165–171. https://doi.org/10.1016/j.jpowsour.2017.12.061

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free