Scaffolding low quality genomes using orthologous protein sequences

Citations of this article
Mendeley users who have this article in their library.


Motivation: The ready availability of next-generation sequencing has led to a situation where it is easy to produce very fragmentary genome assemblies. We present a pipeline, SWiPS (Scaffolding With Protein Sequences), that uses orthologous proteins to improve low quality genome assemblies. The protein sequences are used as guides to scaffold existing contigs, while simultaneously allowing the gene structure to be predicted by homology.Results: To perform, SWiPS does not depend on a high N50 or whole proteins being encoded on a single contig. We tested our algorithm on simulated next-generation data from Ciona intestinalis, real next-generation data from Drosophila melanogaster, a complex genome assembly of Homo sapiens and the low coverage Sanger sequence assembly of Callorhinchus milii. The improvements in N50 are of the order of ∼20% for the C.intestinalis and H.sapiens assemblies, which is significant, considering the large size of intergenic regions in these eukaryotes. Using the CEGMA pipeline to assess the gene space represented in the genome assemblies, the number of genes retrieved increased by >110% for C.milii and from 20 to 40% for C.intestinalis. The scaffold error rates are low: 85-90% of scaffolds are fully correct, and >95% of local contig joins are correct. © 2012 The Author. Published by Oxford University Press. All rights reserved.




Li, Y. I., & Copley, R. R. (2013). Scaffolding low quality genomes using orthologous protein sequences. Bioinformatics, 29(2), 160–165.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free