5-Aminolevulinic Acid Improves Nutrient Uptake and Endogenous Hormone Accumulation, Enhancing Low-Temperature Stress Tolerance in Cucumbers

  • Anwar A
  • Yan Y
  • Liu Y
  • et al.
N/ACitations
Citations of this article
37Readers
Mendeley users who have this article in their library.

Abstract

5-aminolevulinic acid (ALA) increases plant tolerance to low-temperature stress, but the physiological and biochemical mechanisms that underlie its effects are not fully understood. To investigate them, cucumber seedlings were treated with different ALA concentrations (0, 15, 30 and 45 mg/L ALA) and subjected to low temperatures (12/8 °C day/night temperature). The another group (RT; regular temperature) was exposed to normal temperature (28/18 °C day/night temperature). Low-temperature stress decreased plant height, root length, leaf area, dry mass accumulation and the strong seedling index (SSI), chlorophyll contents, photosynthesis, leaf and root nutrient contents, antioxidant enzymatic activities, and hormone accumulation. Exogenous ALA application significantly alleviated the inhibition of seedling growth and increased plant height, root length, hypocotyl diameter, leaf area, and dry mass accumulation under low-temperature stress. Moreover, ALA increased chlorophyll content (Chl a, Chl b, Chl a+b, and Carotenoids) and photosynthetic capacity, net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr), as well as the activities of superoxide dismutase (SOD), peroxidase (POD, catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) enzymes, while decreasing hydrogen peroxide (H2O2), superoxide (O2•−), and malondialdehyde (MDA) contents under low-temperature stress. In addition, nutrient contents (N, P, K, Mg, Ca, Cu, Fe, Mn, and Zn) and endogenous hormones (JA, IAA, BR, iPA, and ZR) were enhanced in roots and leaves, and GA4 and ABA were decreased. Our results suggest the up-regulation of antioxidant enzyme activities, nutrient contents, and hormone accumulation with the application of ALA increases tolerance to low-temperature stress, leading to improved cucumber seedling performance.

Cite

CITATION STYLE

APA

Anwar, A., Yan, Y., Liu, Y., Li, Y., & Yu, X. (2018). 5-Aminolevulinic Acid Improves Nutrient Uptake and Endogenous Hormone Accumulation, Enhancing Low-Temperature Stress Tolerance in Cucumbers. International Journal of Molecular Sciences, 19(11), 3379. https://doi.org/10.3390/ijms19113379

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free