Optimization of Cancer Risk Assessment Models for PM2.5-Bound PAHs: Application in Jingzhong, Shanxi, China

2Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

The accurate evaluation of the carcinogenic risk of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) is crucial because of the teratogenic, carcinogenic, and mutagenic effects of PAHs. The best model out of six models was selected across three highly used categories in recent years, including the USEPA-recommended inhalation risk (Model I), inhalation carcinogen unit risk (Models IIA–IID), and three exposure pathways (inhalation, dermal, and oral) (Model III). Model I was found to be superior to the other models, and its predicted risk values were in accordance with the thresholds of PM2.5 and benzo[a]pyrene in ambient-air-quality standards. Models IIA and III overestimated the risk of cancer compared to the actual cancer incidence in the local population. Model IID can replace Models IIB and IIC as these models exhibited no statistically significant differences between each other. Furthermore, the exposure parameters were optimized for Model I and significant differences were observed with respect to country and age. However, the gender difference was not statistically significant. In conclusion, Model I is recommended as the more suitable model, but in assessing cancer risk in the future, the exposure parameters must be appropriate for each country.

Author supplied keywords

Cite

CITATION STYLE

APA

Qi, H., Liu, Y., Li, L., & Zhao, B. (2022). Optimization of Cancer Risk Assessment Models for PM2.5-Bound PAHs: Application in Jingzhong, Shanxi, China. Toxics, 10(12). https://doi.org/10.3390/toxics10120761

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free