Lamin A/C dysregulation contributes to cardiac pathology in a mouse model of severe spinal muscular atrophy

6Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Cardiac pathology is emerging as a prominent systemic feature of spinal muscular atrophy (SMA), but little is known about the underlying molecular pathways. Using quantitative proteomics analysis, we demonstrate widespread molecular defects in heart tissue from the Taiwanese mouse model of severe SMA. We identify increased levels of lamin A/C as a robust molecular phenotype in the heart of SMA mice and show that lamin A/C dysregulation is also apparent in SMA patient fibroblast cells and other tissues from SMA mice. Lamin A/C expression was regulated in vitro by knockdown of the E1 ubiquitination factor ubiquitin-like modifier activating enzyme 1, a key downstream mediator of SMN-dependent disease pathways, converging on β-catenin signaling. Increased levels of lamin A are known to increase the rigidity of nuclei, inevitably disrupting contractile activity in cardiomyocytes. The increased lamin A/C levels in the hearts of SMA mice therefore provide a likely mechanism explaining morphological and functional cardiac defects, leading to blood pooling. Therapeutic strategies directed at lamin A/C may therefore offer a new approach to target cardiac pathology in SMA.

Cite

CITATION STYLE

APA

Šoltić, D., Shorrock, H. K., Allardyce, H., Wilson, E. L., Holt, I., Synowsky, S. A., … Fuller, H. R. (2019). Lamin A/C dysregulation contributes to cardiac pathology in a mouse model of severe spinal muscular atrophy. Human Molecular Genetics, 28(21), 3515–3527. https://doi.org/10.1093/hmg/ddz195

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free