We quantitatively analyzed the interference interactions between defective interfering (DI) particles and mutants of cloned vesicular stomatitis virus passaged undiluted hundreds of times in BHK-21 cells. DI particles which predominated at different times in these serial passages always interfered most strongly (and very efficiently) with virus isolated a number of passages before the isolation of the DI particles. Virus isolated at the same passage level as the predominant DI particles usually exhibited severalfold resistance to these DI particles. Virus mutants (Sdi- mutants) isolated during subsequent passages always showed increasing resistance to these DI particles, followed by decreasing resistance as new DI particles arose to predominate and exert their own selective pressures on the virus mutant population. It appears that such coevolution of virus and DI particle populations proceeds indefinitely through multiple cycles of selection of virus mutants resistant to a certain DI particle (or DI particle class), followed by mutants resistant to a newly predominant DI particle, etc. At the peak of resistance, virus mutants were isolated which were essentially completely resistant to a particular DI particle; i.e., they were several hundred thousand-fold resistant, and they formed plaques of normal size and numbers in the presence of extremely high multiplicities of the DI particle. However, they were sensitive to interference by other DI particles. Recurring population interactions of this kind can promote rapid virus evolution. Complete sequencing of the N (nucleocapsid) and NS (polymerase associated) genes of numerous Sdi- mutants collected at passage intervals showed very few changes in the NS protein, but the N gene gradually accumulated a series of stable nucleotide and amino acid substitutions, some of which correlated with extensive changes in the Sdi- phenotype. Likewise, the 5' termini (and their complementary plus-strand 3' termini) continued to accumulate extensive base substitutions which were strikingly confined to the first 47 nucleotides. We also observed addition and deletion mutations in noncoding regions of the viral genome at a level suggesting that they probably occur at a high frequency throughout the genome, but usually with lethal or debilitating consequences when they occur in coding regions.
CITATION STYLE
DePolo, N. J., Giachetti, C., & Holland, J. J. (1987). Continuing coevolution of virus and defective interfering particles and of viral genome sequences during undiluted passages: virus mutants exhibiting nearly complete resistance to formerly dominant defective interfering particles. Journal of Virology, 61(2), 454–464. https://doi.org/10.1128/jvi.61.2.454-464.1987
Mendeley helps you to discover research relevant for your work.