DRIT++: Diverse Image-to-Image Translation via Disentangled Representations

312Citations
Citations of this article
420Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for this task: (1) lack of aligned training pairs and (2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for generating diverse outputs without paired training images. To synthesize diverse outputs, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and attribute vectors sampled from the attribute space to synthesize diverse outputs at test time. To handle unpaired training data, we introduce a cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative evaluations, we measure realism with user study and Fréchet inception distance, and measure diversity with the perceptual distance metric, Jensen–Shannon divergence, and number of statistically-different bins.

Cite

CITATION STYLE

APA

Lee, H. Y., Tseng, H. Y., Mao, Q., Huang, J. B., Lu, Y. D., Singh, M., & Yang, M. H. (2020). DRIT++: Diverse Image-to-Image Translation via Disentangled Representations. International Journal of Computer Vision, 128(10–11), 2402–2417. https://doi.org/10.1007/s11263-019-01284-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free