Maternal obesity is associated with pregnancy complications and increases the risk for the infant to develop obesity, diabetes and cardiovascular disease later in life. However, the mechanisms linking the maternal obesogenic environment to adverse short- and long-term outcomes remain poorly understood. As compared with pregnant women with normal BMI, women entering pregnancy obese have more pronounced insulin resistance, higher circulating plasma insulin, leptin, IGF-1, lipids and possibly proinflammatory cytokines and lower plasma adiponectin. Importantly, the changes in maternal levels of nutrients, growth factors and hormones in maternal obesity modulate placental function. For example, high insulin, leptin, IGF-1 and low adiponectin in obese pregnant women activate mTOR signaling in the placenta, promoting protein synthesis, mitochondrial function and nutrient transport. These changes are believed to increase fetal nutrient supply and contribute to fetal overgrowth and/or adiposity in offspring, which increases the risk to develop disease later in life. However, the majority of obese women give birth to normal weight infants and these pregnancies are also associated with activation of inflammatory signaling pathways, oxidative stress, decreased oxidative phosphorylation and lipid accumulation in the placenta. Recent bioinformatics approaches have expanded our understanding of how maternal obesity affects the placenta; however, the link between changes in placental function and adverse outcomes in obese women giving birth to normal sized infants is unclear. Interventions that specifically target placental function, such as activation of placental adiponectin receptors, may prevent the transmission of metabolic disease from obese women to the next generation.
CITATION STYLE
Kelly, A. C., Powell, T. L., & Jansson, T. (2020, April 1). Placental function in maternal obesity. Clinical Science. Portland Press Ltd. https://doi.org/10.1042/CS20190266
Mendeley helps you to discover research relevant for your work.