Hypoxia-ischemia (HI) and excitotoxicity are validated causes of neonatal brain injuries and tissue plasminogen activator (t-PA) participates in the processes through proteolytic and receptor-mediated pathways. Brain microvascular endothelial cells from neonates in culture, contain and release more t-PA and gelatinases upon glutamate challenge than adult cells. We have studied t-PA to gelatinase (MMP-2 and MMP-9) activity links in HI and excitotoxicity lesion models in 5 day-old pups in wild type and in t-PA or its inhibitor (PAI-1) genes inactivated mice. Gelatinolytic activities were detected in SDS-PAGE zymograms and by in situ fluorescent DQ-gelatin microscopic zymographies. HI was achieved by unilateral carotid ligature followed by a 40 min hypoxia (8%O2). Excitotoxic lesions were produced by intra parenchymal cortical (i.c.) injections of 10 μg ibotenate (Ibo). Gel zymograms in WT cortex revealed progressive extinction of MMP-2 and MMP-9 activities near day 15 or day 8 respectively. MMP-2 expression was the same in all strains while MMP-9 activity was barely detectable in t-PA-/- and enhanced in PAI-1-/- mice. HI or Ibo produced activation of MMP-2 activities 6 hours post-insult, in cortices of WT mice but not in t-PA-/- mice. In PAI-1-/- mice, HI or vehicle i.c. injection increased MMP-2 and MMP-9 activities. In situ zymograms using DQ-gelatin revealed vessel associated gelatinolytic activity in lesioned areas in PAI-1-/- and in WT mice. In WT brain slices incubated ex vivo, glutamate (200 μM) induced DQ-gelatin activation in vessels. The effect was not detected in t-PA-/-mice, but was restored by concomitant exposure to recombinant t-PA (20 μg/mL). In summary, neonatal brain lesion paradigms and ex vivo excitotoxic glutamate evoked t-PA-dependent gelatinases activation in vessels. Both MMP-2 and MMP-9 activities appeared t-PA-dependent. The data suggest that vascular directed protease inhibition may have neuroprotection potential against neonatal brain injuries. © 2013 Omouendze et al.
CITATION STYLE
Omouendze, P. L., Henry, V. J., Porte, B., Dupré, N., Carmeliet, P., Gonzalez, B. J., … Leroux, P. (2013). Hypoxia-Ischemia or Excitotoxin-Induced Tissue Plasminogen Activator- Dependent Gelatinase Activation in Mice Neonate Brain Microvessels. PLoS ONE, 8(8). https://doi.org/10.1371/journal.pone.0071263
Mendeley helps you to discover research relevant for your work.